首页> 外文OA文献 >SQG-Differential Evolution for difficult optimization problems under a tight function evaluation budget
【2h】

SQG-Differential Evolution for difficult optimization problems under a tight function evaluation budget

机译:sQG-差分进化算法求解困难下的优化问题   功能评估预算紧张

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the context of industrial engineering it is important to integrateefficient computational optimization methods in the product developmentprocess. Some of the most challenging simulation based engineering designoptimization problems are characterized by: a large number of design variables,the absence of analytical gradient information, highly non-linear objectivesand a limited function evaluation budget. Although a huge variety of differentoptimization algorithms is available, the development and selection ofefficient algorithms for problems with these industrial relevantcharacteristics, remains a challenge. In this communication a hybrid variant ofDifferential Evolution (DE) is introduced which combines aspects of StochasticQuasi-Gradient (SQG) methods within the framework of DE, in order to improveoptimization efficiency on problems with the previously mentionedcharacteristics. The performance of the resulting method is compared with otherstate-of-the-art DE variants on 25 commonly used test functions, under tightfunction evaluation budget constraints of 1000 evaluations. The experimentalresults indicate that the proposed method performs particularly good on the"difficult" (high dimensional, multi-modal, inseparable) test functions. Theoperations used in the proposed mutation scheme, are computationallyinexpensive, and can be easily implemented in existing differential evolutionor other optimization algorithms by a few lines of program code as annon-invasive optional setting. Besides the applicability of the presentedalgorithm by itself, the described concepts can serve as a useful andinteresting addition to the algorithmic operators in the frameworks ofheuristics and evolutionary optimization and computing.
机译:在工业工程中,重要的是在产品开发过程中集成高效的计算优化方法。一些基于仿真的最具挑战性的工程设计优化问题的特征是:设计变量众多,缺少分析梯度信息,高度非线性的目标以及功能评估预算有限。尽管有许多不同的优化算法可供使用,但针对这些工业相关特性问题的高效算法的开发和选择仍然是一个挑战。在此通信中,引入了差分演化(DE)的混合变体,该变体在DE的框架内结合了随机准梯度(SQG)方法的各个方面,以提高针对上述特征的问题的优化效率。在1000个评估的严格功能评估预算约束下,将所得方法的性能与25个常用测试功能上的其他最新DE变量进行了比较。实验结果表明,所提出的方法在“困难”(高维,多模态,不可分割)测试功能上表现特别出色。提出的突变方案中使用的操作在计算上很便宜,并且可以通过几行程序代码作为非侵入性可选设置轻松地在现有的差分进化算法或其他优化算法中实现。除了表示算法本身的适用性外,在启发式,进化优化和计算的框架中,所描述的概念还可以作为算法运算符的有用且有趣的补充。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号